

Reyrolle Protection Devices

7SR242 Duobias

Transformer Protection Relay

Answers for energy

7SR242 Duobias

Transformer Protection Relay

Description

Our new generation of integrated transformer protection relays are designated the 7SR24 series. The relays utilise years of numeric relay protection experience with the 'Duobias' family of products.

Housed in 4U high, size E8 or E10 cases, these relays provide protection, control, monitoring, instrumentation and metering with integrated input and output logic, data logging & fault reports. Communication access to relay functionality is via a front USB port for local PC connection or rear electrical RS485 port for remote connection. Additional rear port options are available.

Function Overview

Standard Functionality

50BF Circuit Breaker Fail 64H High Impedance REF

74TCS/CCS Trip/Close Circuit Supervision

81HBL2 Inrush Detector 81HBL5 Overfluxing Detector

87BD Biased Differential (2Windings) 87HS Current Differential High-Set

8 Settings Groups

Password Protection - 2 levels

Programmable Logic **Self Monitoring**

Optional Functionality

24 Over-Fluxing 27/59 Under/Over Voltage 37/37G Undercurrent 46BC Open Circuit

46NPS Negative Phase Sequence Overcurrent

49 Thermal Overload 50 Instantaneous Overcurrent 50G/N Instantaneous Earth Fault Time Delayed Overcurrent

51G/N Time Delayed Measured Earth Fault /SEF

59N Neutral Voltage Displacement 81 Under/Over Frequency

User Interface

20 character x 4 line backlit LCD Menu navigation keys 3 fixed LEDs 16 or 24 Programmable Tri-colour LEDs (Option)

Primary current phases and earth Secondary current phases and earth Relay Operate and restraint currents Positive Phase Sequence (PPS) Current Negative Phase Sequence (NPS) Current Zero Phase Sequence (ZPS) Current

Thermal status

Primary Single phase voltage* Secondary single phase voltage* Data logging and Demand Metering

Frequency & fluxing*

Binary Input/binary output and virtual I/O status

Trip circuit healthy/failure

Time and date

Fault records

Event records

Waveform records

Circuit breaker trip counters

I2t summation for contact wear

* Optional voltage measurements from single phase VT input

Data Communications

Communication access to relay functionality is via a front USB port for local PC connection or rear electrical RS485 port for remote connection

2 Rear ST fibre optic ports (2 x Tx/Rx) + IRIG-B port

1 Rear RS485 + IRIG-B port

1 Rear RS232 + IRIG-B port

Protocols

IEC60870-5-103, Modbus RTU and optional DNP 3.0 protocols – User selectable with programmable data points.

Description of Functionality

50BF Circuit Breaker Fail

The circuit breaker fail function may be triggered from an internal trip signal or from a binary input. Line and neutral currents are monitored following a trip signal and an output is issued if any current is still detected after a specified time interval. Alternatively, if the trip is from a mechanical protection the circuit breaker position can be used to determine a failure. A second time delay is available to enable another stage to be utilized if required. An input is also available to bypass the time delays when the circuit breaker is known to be faulty.

64H Restricted Earth Fault - scheme

The measured earth fault input may be used in a high impedance restricted earth fault scheme. Required external series stabilising resistor and non-linear voltage limiting shunt resistor can be supplied.

74TCS/CCS Trip/Close Circuit Supervision

The trip and close circuit(s) can be monitored via binary inputs. Circuit failure raises an HMI alarm and output(s).

81HBL2 Inrush Detector

Where second harmonic current is detected (i.e. during transformer energisation) user selectable elements can be blocked.

81HBL5 Overfluxing Detector

Fifth Harmonic Detectors can be user selected to block the Biased Differential Elements.

87BD Biased Differential

The differential characteristic incorporates two bias stages – the first stage for steady state errors i.e. tap position and CT ratios the second stage for transient errors i.e. CT saturation.

87HS High-Set Differential

High speed differential elements provide protection against high levels of internal fault current.

Programmable Logic

The user can map Binary Inputs and Protection operated outputs to Function Inhibits, Logic Inputs, LEDs and/or Binary Outputs.

The user can also enter up to 16 equations defining scheme logic using standard functions e.g. Timers, Latches, AND/OR gates, Inverters and Counters.

Each Protection element output can be used for Alarm & Indication and/or tripping.

Circuit Breaker Maintenance

For each winding two circuit breaker operations counters are provided. The Maintenance Counter records the overall number of operations and the Delta Counter the number of operations since the last reset.

 I^2t summation Counters provide a measure of the contact wear indicating the total energy interrupted by the circuit breaker contacts.

Each counter has a user set target operations count which, when reached, can be mapped to raise Alarms/ Binary Outputs.

These counters assist with maintenance scheduling.

Function LED's

16 or 24 user programmable tri-colour LED's are provided eliminating the need for expensive panel mounted pilot lights and associated wiring. Each LED can be user set to red, green or yellow allowing for clear indication of the associated function's state. A slip-in label pocket along-side enables the user to insert his own notation. A printer compatible template is available.

Fig 1: Tri-colour LED's

Optional Functionality

24 Over-Fluxing

Two elements each provide a definite time lag (DTL) characteristic, the third element provides a user defined characteristic. Operates if Volts/Hertz ratio is above setting for duration of delay.

27/59 Under/Over Voltage

Each element has settings for pickup level, drop-off level and Definite Time Lag (DTL) delays. Operates if voltage 'exceeds' setting for duration of delay. Can be applied in load shedding schemes.

37/37G Undercurrent

Each element has settings for pickup level and Definite Time Lag (DTL) delays. Operates if current falls below setting for duration of delay.

46NPS Negative Phase Sequence Overcurrent

Two DTL and two inverse/DTL elements are provided. NPS Current elements can be used to detect unbalances on the system or remote earth faults when a delta-star transformer is in circuit.

46BC Open Circuit

Each element has settings for pickup level and DTL delay. With the circuit breaker closed, if the NPS:PPS current ratio is above setting this could be due to an open circuit.

49 Thermal Overload

The thermal algorithm calculates the thermal states from the measured line currents. Outputs are available for thermal overload and thermal capacity.

50/51 Phase Fault

50 INST/DTL and 51 IDMTL/DTL elements provide overcurrent protection, each with independent settings for pickup current, time-multiplier (51) and time-delays. IEC, ANSI or user defined Time Current Characteristics can be selected. The IDMT stage has a user programmable DTL or shaped current/time reset characteristic, to improve grading with electromechanical protection.

50G/51G/50N/51N Earth Fault

Two earth fault measurement modes are available. One mode directly measures the earth current from an independent CT, or the residual connection of the 3 line CTs (50G/51G). The second mode derives the earth current internally from the 3 phase CTs (50N/51N).

50 INST/DTL and 51 IDMTL/DTL elements provide overcurrent protection, each with independent settings for pickup current, time-multiplier (51) and time-delays. IEC, ANSI or user defined Time Current Characteristics can be selected.. The IDMT stage has a user programmable reset characteristic either DTL or shaped current/time reset characteristic to improve grading with electromechanical protection.

59N Neutral Overvoltage

One element provides a definite time lag (DTL) characteristic; the second element provides an inverse/DTL characteristic. Operates if Neutral voltage exceeds setting for duration of delay.

Neutral overvoltage can be used to detect earth faults in high impedance earthed or isolated systems.

81 Under/Overfrequency

Each element has settings for pickup level, drop-off level and Definite Time Lag (DTL) delays. Each element operates if frequency exceeds setting for duration of delay. Typically applied in load shedding schemes.

Data Acquisition - Via Communication Interface

Sequence of event records

Up to 5000 events are stored and time tagged to 1ms resolution.

Fault Records

The last 10 fault records are displayed on the HMI, with time and date of trip, measured quantities and type of fault.

Waveform recorder

The waveform recorder stores analogue data for all phases, the states of protection functions, Binary Inputs, LEDs and Binary Outputs with pre & post trigger data. A record can be triggered from Protection function, Binary input or via data communications. 1 record of 10sec, 2 of 5sec, 5 of 2sec or 10 records of 1 second are stored. The ratio of pre-fault to post fault storage can be set by the user.

Data Log

Provides a rolling record of line currents and voltage (where applicable) over a user selectable period of time.

Serial Communications

The relay offers a USB serial port as standard on the front of all units. All of the relays functions can be set on a PC using Reydisp Evolution via the relay USB port. The connection is made with a USB cable and operates with a 'plug and play' connection, so no pre-setting of the relay is required. The front port can be switched off or set to use either the MODBUS-RTU, IEC60870-5-103, DNP3.0 (optional) or ASCII protocols for testing purposes.

A rear RS485 electrical connection is available on all units for system interface connections. An internal terminating resistor is provided, which can be connected into the circuit by adding a wire loop between the relevant terminals.

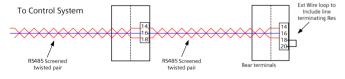


Fig 2. Typical RS485 connection

The rear RS485 can be user selected to be OFF, IEC60870-5-103, MODBUS RTU or optional DNP3.0 protocol.

Reydisp Evolution

Fig 3. Typical Reydisp Evolution screenshot

Reydisp Evolution is common to the entire range of Reyrolle numeric products. It provides the means for the user to apply settings interrogate settings and retrieve events and disturbance waveforms from the Duobias relay.

Technical Data

For full technical data refer to the Performance Specification Chapter of the Technical Manual.

Inputs and Outputs

Current Inputs

Quantity	6 x Phase & 2 x Earth
Rated Current IN	1/5A
Measuring Range	80 x In
Instrumentation ≥ 0.1xIn	±1% In
Frequency	50/60Hz
Thermal Withstand:	
Continuous	3.0 x ln
10 Minutes	3.5 x ln
5 Minutes	4.0 x ln
3 Minutes	5.0 x ln
2 Minutes	6.0 x ln
3 Seconds	57.7A (1A) 202A (5A)
2 Seconds	70.7A (1A) 247A (5A)
1 Second	100A (1A) 350A (5A)
1 Cycle	700A (1A) 2500A (5A)
Burden @ In	\leq 0.1VA (1A phase and Earth element) \leq 0.3VA (5A phase and earth element)

Voltage Inputs

Quantity	1 (optional)
Nominal Voltage	40160V a.c. Range
Instrumentation ≥ 0.8xVn	±1% Vn
Thermal Withstand: Continuous 1 Second	300V
Burden @ 110V	≤ 0.1 VA

DC Auxiliary supply

Nominal voltage	Operating Range V dc
30 to 220V dc	Range 24 to 290 V dc

Nominal Voltage	Quiescent	Quiescent
	Burden (typical)	Burden (back-
		light)
30V dc	6.0W	7.0W
48V dc	5.50W	6.50W
110V dc	6.5W	7.5W
220V dc	7.5W	8.5W

Allowable superimposed ac	≤ 12% of dc
component	voltage
Allowable breaks/dips in	
supply (collapse to zero from	≤ 20 ms
nominal voltage)	

Binary Inputs

Operating Voltage	19V dc: Range 17 to 290V dc 88V dc: Range 74 to 290V dc
Maximum dc current for operation	1.5mA

Binary Outputs

Operating Voltage	Voltage Free
Operating Mode	User selectable - Self or Hand Reset
Contact Operate / Release Time.	7ms / 3ms
Making Capacity: Carry continuously Make and carry (L/R \leq 40 ms and V \leq 300 V)	5A ac or dc 20A ac or dc for 0.5s 30A ac or dc for 0.2s
Breaking Capacity (≤5 A and ≤300 V): AC Resistive AC Inductive DC Resistive DC Inductive	1250 VA 250 VA at p.f. ≤ 0.4 75 W 30 W at L/R ≤ 40ms 50 W at L/R ≤ 10ms

Mechanical Tests

Vibration (Sinusoidal)

IEC 60255-21-1 Class I

Туре	Level	Variation
Vibration response	0.5 gn	≤ 5 %
Vibration endurance	1.0 gn	≤ 5 %

Shock and Bump

IEC 60255-21-2 Class I

Туре	Level	Variation
Shock response	5 gn, 11 ms	≤ 5 %
Shock withstand	15 gn, 11 ms	≤ 5 %
Bump test	10 gn, 16 ms	≤ 5 %

Seismic

IEC 60255-21-3 Class I

Туре	Level	Variation
Seismic response	1 gn	≤ 5 %
	3	

Mechanical Classification

Durability	>10 ⁶ operations
------------	-----------------------------

Electrical Tests

Insulation

IEC 60255-5

Туре	Level
Between any terminal and earth	2.0 kV AC RMS for 1 min
Between independent circuits	2.0 kV AC RMS for 1 min
Across normally open contacts	1.0 kV AC RMS for 1 min

Transient Overvoltage

IEC 60255-5

Between all terminals and	5 kV
earth or between any two	1.2/50 μs
independent circuits	0.5 J

High Frequency Disturbance

IEC 60255-22-1 Class III

Type	Level	Variation
Common	2.5 kV	≤ 5 %
(longitudinal) mode		
Series (transverse)	1.0 kV	≤ 5 %
mode		

Electrostatic Discharge

IEC 60255-22-2 Class I\

Туре	Level	Variation
Contact discharge	8.0 kV	≤ 5 %

Fast Transients

IEC 60255-22-4 Class IV

Туре	Level	Variation
5/50 ns 2.5 kHz	4kV	≤ 5 %
repetitive		

Surge Immunity

IEC 60255-22-5

Туре	Level	Variation
Between all terminals and earth	4.0 kV	≤ 10 %
Between any two independent circuits	2.0kV	

Conducted Radio Frequency Interference

IEC 60255-22-6

Туре	Level	Variation
0.15 to 80 MHz	10 V	≤ 5 %

Radiated Radio Frequency

IFC 60255-25

Туре	Limits at 10 m, Quasi-peak
30 to 230 MHz	40 dB(μV)
230 to 10000 MHz	47 dB(μV)

Conducted Radio Frequency

Туре	Limits	
	Quasi-peak	Average
0.15 to 0.5 MHz	79 dB(μV)	66 dB(μV)
0.5 to 30 MHz	73 dB(μV)	60 dB(μV)

Radiated Immunity

IEC 60255-22-3 Class III

Туре	Level	Variation
80 MHz to 1000	10 V/m	≤ 5 %
MHz		

Magnetic Field with Power Frequency

IEC 61000-4-8, Class V

100 A/m continuous	50Hz; 1.257mT
1000 A/m for 3s	33.12, 112371111

Climatic Tests

Temperature

IEC 60068-2-1/2

Operating Range	-10 °C to +55 °C
Storage range	-25 °C to +70 °C

Humidity

IFC 60068-2-3

Operational test	56 days at 40 °C and 93 % relative humidity
	<u>-</u>

IP Ratings

Туре	Level
Installed with cover	IP 50
Installed with cover removed	IP 30

Performance

27/59 Under/Over Voltage

Number of Elements	4 Under or Over
Setting Range Vs	5, 5.5200V
Hysteresis Setting	0. 0.180%
Vs Operate Level	100% Vs, ±1% or ±0.25V
Reset Level:	
Undervoltage	(100% + hyst) x Vop, ±1% or 0.25V
Overvoltage	(100% - hyst) x Vop, ±1% or 0.25V
Delay Setting td	0.00, 0.0120, 20.5100, 1011000, 101010000, 1010014400s
Basic Operate Time :	
0 to 1.1xVs	73ms ±10ms
0 to 2.0xVs	63ms ±10ms
1.1 to 0.5xVs	58ms ±10ms
Operate time following delay.	Tbasic + td , ±1% or ±10ms
Inhibited by	Binary or Virtual Input U/V Guard

37, 37G Undercurrent

Number of Elements	Phase (37) x 2 Earth (37G) x 2
Setting Range Is	0.05, 0.105.0 x ln
Operate Level	100% ls, ±5% or ±1%xln
Delay Setting td	0.00, 0.0120, 20.5100, 1011000, 101010000, 1010014400s
Basic Operate Time: 1.1 to 0.5xln	35ms ±10ms
Operate time following delay.	Tbasic + td , ±1% or ±10ms
Overshoot Time	< 40ms
Inhibited by	Binary or Virtual Input U/I Guard (37)

46 Negative Phase Sequence Overcurrent

Number of Elements	DT & IT
DT Setting Range Is	0.05, 0.064.0 x ln
DT Operate Level	100% ls, ±5% or ±1%xln
DT Delay Setting td	0.00, 0.0120, 20.5100, 1011000, 101010000, 1010014400s
DT Basic Operate Time: 0 to 2 x ls	40ms ±10ms
DT Operate time following delay.	Tbasic + td , ±1% or ±10ms
IT Char Setting	IEC: NI,VI,EI,LTI ANSI: MI,VI,EI DTL
IT Setting Range	0.05, 0.062.5
Tm Time Multiplier	0.025, 0.0501.6
Char Operate Level	105% ls, ±4% or ±1%ln
Overshoot Time	< 40ms
Inhibited by	Binary or Virtual Input

49 Thermal Overload

Operate levels	Operate and Alarm
Setting Range Is	0.10, 0.113.0 x ln
Operate Level	100% ls, ±5% or ±1%xln
Time Constant Setting	1,1.51000min
Operate time	$t = \tau \times In \left\{ \frac{I^2 - I_p^2}{I^2 - (k \times I_B)^2} \right\}$
	±5% absolute or ±100ms where
	lp = prior current
Alarm Level	Disabled, 50,51100%
Inhibited by	Binary or Virtual Input

50 Instantaneous & DTL OC&EF

Elements	Phase (OC), Derived Earth (N) and Measured Earth (G)
Number of Elements	2 x OC 2 x Derived EF (N)
	2 x Measured EF (G)
Setting Range Is	0.05,0.0650 x In (OC, N)
	0.00525 x ln (G)
Time Delay	0.0014400s
Operate Level	100% ls, ±5% or ±1% x ln
Operate time:	
50, 50G	0 to 2xls – 35ms, ±10ms,
	0 to 5xls – 25ms, ±10ms
50N	0 to 2xls – 35ms, ±10ms,
	0 to 5xls – 30ms, ±10ms
Operate time following delay	Tbasic + td , $\pm 1\%$ or ± 10 ms
Inhibited by	Binary or Virtual Input
	Inrush detector

Elements	Phase (OC), Derived Earth (N)
	and Measured Earth (G)
Number of Elements	2 x OC
	2 x Derived EF (N)
	4 x Measured EF (G)
Characteristic	IEC: NI,VI,EI,LTI
	ANSI: MI,VI,EI
	DTL
Setting Range Is	0.05, 0.12.5 x In (OC, N)
	0.005, 0.011.0 x ln (G)
Time Multiplier	0.025,0.051.6
Time Delay	0, 0.01 20s
Operate Level	105% ls, ±4% or ±1%xln
Minimum Operate time	$t_{op} = \frac{K}{\left[\frac{L}{L}\right]^{\alpha} - 1} \times Tm$
IEC	L15 J
	$t_{op} = \left\lceil \frac{A}{\left\lceil \frac{1}{r} \right\rceil^p - 1} + B \right\rceil \times Tm$
ANSI	$l_{op} - \left[\frac{I}{I_{s}}\right]^{p} - 1 + D $
	. F.0/ . hard to an 1.20
	\pm 5 % absolute or \pm 30 ms
Follower Delay	0 - 20s
Reset	ANSI decaying, 0 – 60s
Inhibited by	Binary or Virtual Input
	Inrush detector

50BF Circuit Breaker Fail

Operation	Current check
Setting Range Is	0.05,0.0552.0 x ln (Phase)
	0.005,0.0102.0 x In (Earth)
2 Stage Time Delays	Timer 1 0,560000ms
	Timer 2 0,560000ms
Operate Level	100% ls, ±5% or ±1%xln
Basic Operate time	< 20ms
Operate time following	Tdelay ±1% or ±10ms
delay	
Triggered by	Any function mapped as trip
	contact.
Inhibited by	Binary or Virtual Input

59N Neutral Voltage Displacement

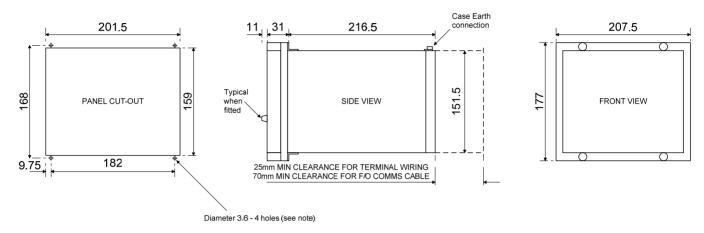
Number of Elements	DT & IT
DT Setting Range Is	1100V
DT Operate Level	100% Vs, ±5% or ±1%xVn
DT Delay Setting td	014400s
DT Basic Operate Time	76ms ±20ms
0V to 1.5xVs	
DT Operate time	Tbasic + td , ±1% or ±20ms
following delay.	
IT Setting Range	1100V
Tm Time	0.1140
Multiplier(IDMT)	
Delay (DTL)	020s
Reset	ANSI Decaying, 0 60s
Char Operate Level	105% Vs, ±2% or ± 0.5V
Inhibited by	Binary or Virtual Input

Setting Range	0.0050.95xln
Operate Level	100% ls, ±5% or ±1%xln
Time Delay	0.00 14400s
Basic Operate Time	0 to 2 x ls: 40ms ±10ms
	0 to 5 x ls: 30ms ±10ms
Inhibited by	Binary or Virtual Input

74TCS Trip Circuit Supervision

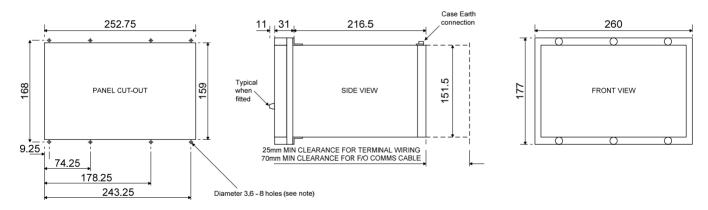
Number of supervisable circuits	6
Number of BI's Required	1 or 2 per function

81 Under/Over Frequency


Number of Elements	6 Under or Over
Setting Range Vs	40 69.99Hz
Hysteresis Setting	0. 0.180%
Vs Operate Level	100% Fs, ±10mHz
Reset Level:	
Over frequency	(100% - hyst) x Fop, ±10mHz
Under frequency	(100% + hyst) x Fop, ±10mHz
Delay Setting td	0.00, 0.0120, 20.5100,
	1011000, 101010000,
	1010014400s
Basic Operate Time :	Typically <110ms
(for ROCOF between 0.1	Maximum <150ms
and 5.0 Hz/sec)	
Operate time following	Tbasic + td , ±1% or ±10ms
delay.	
Inhibited by	Binary or Virtual Input
-	· · · · · · · · · · · · · · · · · · ·

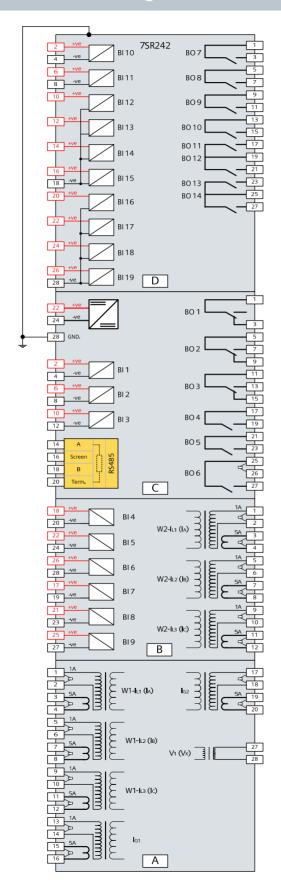
87BD Biased Differential

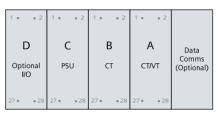
Number of Elements	1
Setting Range	
Initial	0.1, 0.15 2 x ln
1 st Bias Slope	0.1, 0.15 0.7x
1st Bias Slope Limit	1, 2 20 x ln
2 nd Bias Slope	1, 1.5 2x
2 nd Bias Slope Type	Line, curve
Operate Level:	•
Initial setting	±5% of setting or ±0.01 In
Bias slope	±10% of setting or ±0.01 In
Reset Level:	210 % of setting of 20.01 m
Over frequency	(100% - hyst) x Fop, ±10mHz
. ,	
Under frequency	(100% + hyst) x Fop, ±10mHz
Delay Setting td	0.000, 0.005 1s
Basic Operate Time :	
(inrush action Enabled)	
0 to 3 x lop	35ms ±10ms
0 to 10 x lop	30ms ±10ms
Operate time following	Tbasic + td , ±1% or ±10ms
delay.	
Inhibited by	Binary or Virtual Input
,	,


Case Dimensions

NOTE:

THE 3.6 HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR) SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE SUITABLE FOR USE IN FERROUS / ALUMINIUM PANELS 1.6mm THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4 CLEARANCE (TYPICALLY 4.5 DIAMETER) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN PANEL FIXING KIT).


Fig 4. E8 Case



NOTE:
THE 3.6 HOLES ARE FOR M4 THREAD FORMING (TRILOBULAR) SCREWS. THESE ARE SUPPLIED AS STANDARD AND ARE SUITABLE FOR USE IN FERROUS / ALUMINIUM PANELS
1.6 MIN THICK AND ABOVE. FOR OTHER PANELS, HOLES TO BE M4 CLEARANCE (TYPICALLY 4.5 DIAMETER) AND RELAYS MOUNTED USING M4 MACHINE SCREWS, NUTS AND LOCKWASHERS (SUPPLIED IN PANEL FIXING KIT).

Fig 5. E10 Case

7SR24 Connection Diagram

Rear View Arrangement of terminals and modules

NOTES
BI =
BO =

Binary Input
Binary Output

Shows contacts internal to relay case assembly.
Contacts close when the relay chassis is withdrawn from case

Fig 6. 7SR242 Wiring Diagram

7SR24 Function diagram / example of external connections

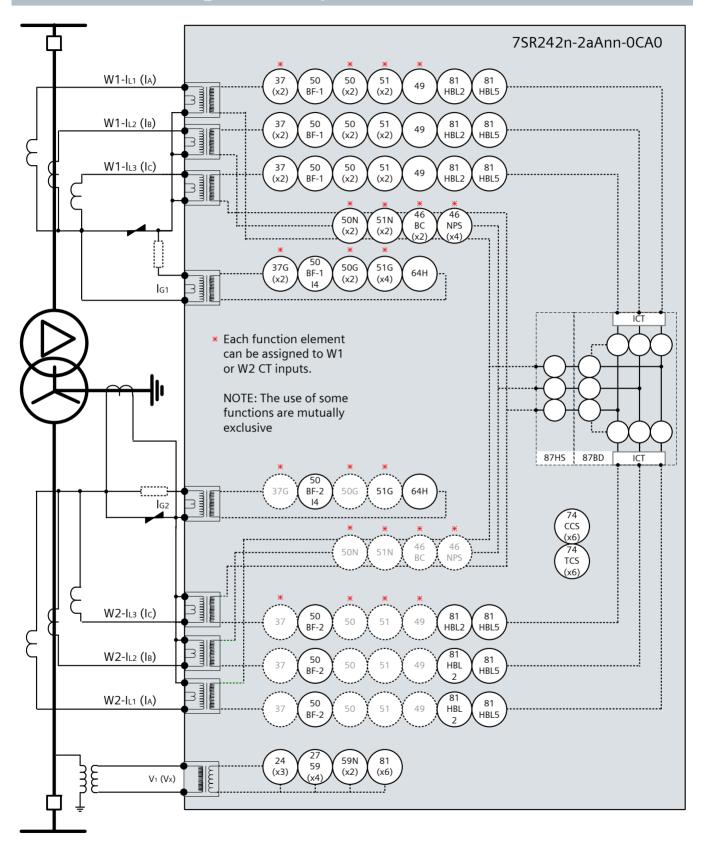


Fig 7. Standard and Optional Functionality of 7SR24 Relay

Ordering Information – 7SR24 2 Winding Transformer Protection

Product description Variants Order No. **Duobias** 7 S R 2 4 2 \square - 2 \square A \square \square - 0 \square A 0 Multifunctional 2 winding transformer differential **Protection Product** protection Transformer Relay Type Differential (2 winding) Case I/O and Fascia E8 case, 6 CT, 2 EF/REF CT, 1 VT, 9 Binary Inputs / 6 Binary Outputs, E10 case, 6 CT, 2 EF/REF CT, 1 VT, 19 Binary Inputs / 14 Binary Outputs, 24 LEDs Measuring Input 1/5 A, 63.5/110V, 50/60Hz Auxiliary voltage 30 to 220V DC, binary input threshold 19V DC 30 to 220V DC, binary input threshold 88V DC Communication Interface Standard version – included in all models, USB front port, RS485 rear port 2 Standard version – plus additional rear F/O ST connectors (x2) and IRIG-B 3 Standard version - plus additional rear RS485 (x1) and IRIG-B Standard version - plus additional rear RS232 (x1) and IRIG-B Protocol IEC 60870-5-103 and Modbus RTU (user selectable setting) IEC 60870-5-103 and Modbus RTU and DNP 3.0 (user selectable) 2 **Protection Function Packages** Option A: Standard version - Included in all models - 81HBL2 Inrush Detector - 81HBL5 Overfluxing detector - 87BD Biased current differential - 87HS Current differential highset Programmable logic For each winding/circuit breaker - 50BF Circuit breaker fail - 64H High impedance REF - 74TCS/CCS Trip/Close circuit supervision Ŕ Option B: Standard version – plus - 37/37G Undercurrent - 46BC Open circuit - 46NPS Negative phase sequence overcurrent - 49 Thermal overload - 50 Instantaneous phase fault overcurrent - 50G/50N Instantaneous earth fault - 51 Time delayed phase fault overcurrent - 51G/51N Time delayed earth fault (continued on following page)

Ordering Information – 7SR24 2 Winding Transformer Protection

Product description \	Variants Variants	Order No.).	
Duobias			7 S R 2 4 2 🗆 - 2 🗆 A 🗆 1 -	0 🗆 A 0
(continued from previous page)	Option C: - 24 - 27/59 - 59N - 81 - 37/37G - 46BC - 46NPS - 49 - 50 - 50G/50N - 51 - 51G/51N Additional Fullon		nt	C

¹⁾ For ESI48-4 compliance of binary inputs external resistors are required – see Technical Manual.

Published by and copyright © 2010: Siemens AG Energy Sector Freyeslebenstrasse 1 91058 Erlangen, Germany

Siemens Protection Devices Limited P.O. Box 8 North Farm Road Hebburn Tyne & Wear NE31 1TZ United Kingdom

Phone: +44 (0)191 401 7901 Fax: +44 (0)191 401 5575 www.siemens.com/energy

For more information, please contact our

Customer Support Center. Phone: +49 180/524 70 00

Fax: +49 180/524 24 71(Charges depending on provider)

E-mail: support.energy@siemens.com

Power Distribution Division Order No. E53000-K7076-C9-2 Printed in Fürth

Printed on elementary chlorine-free bleached paper.

All rights reserved.

Trademarks mentioned in this document are the property of Siemens AG, its affiliates, or their respective owners.

Subject to change without prior notice.

The information in this document contains general descriptions of the technical options available, which may not apply in all cases. The required technical options should therefore be specified in the contract.

